Find Faculty Experts
-
Education
- Degree: Sc.D.
- Year: 1976
-
Institution and Location
Massachusetts Institute of Technology, Cambridge, MA -
Major Discipline
Mechanical Engineering
- Degree: M.S.
- Year: 1973
-
Institution and Location
Lehigh University, Bethlehem, PA -
Major Discipline
Mechanical Engineering
- Degree: B.S.
- Year: 1970
-
Institution and Location
National Taiwan University, Taipei, Taiwan -
Major Discipline
Mechanical Engineering
-
Je-Chin Han
Distinguished Professor; Marcus C. Esterling Chair; Department of Mechanical Engineering
Department(s): Department of Mechanical Engineering
Campus: Texas A&M University
Contact Information
Phone: 979-845-3738Personal/Dept/Lab URL:
E-mail: jc-han@tamu.edu
Personal Departmental Webpage
http://turbinecooling.tamu.edu/
Research Topic(s)
Coal conversion to liquid fuels/chemicals/electricity; Electric power generation and storage
Research Summary
Thermal Fluid Sciences – heat transfer and cooling in gas turbines, heat transfer enhancement, heat transfer in rotating flows, film cooling in unsteady high turbulence flows, mini-scale heat transfer, combustion system heat transfer, advanced CFD and experimental methods. Energy and Power Technology – advanced hydrogen turbine for clean power, advanced gas turbine for aircraft propulsion and vehicle transportation, micro-turbine, clean energy technology.
Professional Background
2006-Present Distinguished Professor, Department of Mechanical Engineering, Texas A&M University, College Station, TX 2001-Present Marcus C. Esterling Endowed Chair Professor of Mechanical Engineering, Texas A&M University 1993-Present Director, Turbine Heat Transfer Laboratory of Mechanical Engineering, Texas A&M University 1993-2001 Endowed Professor, Heat Transfer Research, Inc., College of Engineering, Texas A&M University 1993-1998 Division Chair, Thermal and Fluid Sciences Division of Mechanical Engineering, Texas A&M University 1991-1992 Halliburton Professor, College of Engineering, Texas A&M University 1989-2006 Full Professor, Department of Mechanical Engineering, Texas A&M University 1988 TEES Senior Fellow, Texas Engineering Experiment Station, Texas A&M University 1984-1989 Associate Professor, Department of Mechanical Engineering, Texas A&M University 1980-1984 Assistant Professor, Department of Mechanical Engineering, Texas A&M University 1978-1980 Senior Research Engineer, Research and Development Center, Ex-Cell-O Corporation, Walled Lake, MI 1976-1977 Process Development Engineer, Research and Development Center, Ex-Cell-O Corporation 1977-1978 Associate Professor of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan -
Themes, Areas, and Topics
-
Theme 1: Fossil and Non-Fossil based Technologies for Energy
-
Area 1: Fossil-based Technologies for Energy
- T1: Petroleum exploration and production
- T2: Conventional and unconventional reservoirs
- T3: Drilling technologies
- T4: Natural/shale gas production
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T12: Hydrogen production
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T57: Energy security
- T58: Environmental risk assessment for planning offshore structures
- T60: Water use in hydraulic fracturing
- T65: Crude oil processing: non-thermal, electrical discharge, and plasma processes
-
Area 2: Renewable Technologies for Energy
- T7: Biomass production
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T17: Solar energy conversion and lighting technologies
- T18: Materials for solar energy conversion and storage
- T19: Wind energy conversion technologies
- T20: Wind energy measurement, forecasting, and storage
- T24: Ocean energy conversion
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T34: Fuel cells technologies and materials
- T35: Thermoelectrics-based technologies and materials
- T55: Nondestructive testing for energy applications
- T56: Biofuel biochemistry and energy metabolism
- T63: Turbomachinery for energy use and its reliability
- T64: Materials for wind energy
- Area 3: Geothermal and Hydropower-based Technologies for Energy
-
Area 4: Nuclear Energy Technologies
- T14: Nuclear energy conversion technologies
- T15: Materials for nuclear fuels and system design
- T16: Nuclear safety and security
- T27: Multifunctional materials for energy applications
- T53: Applied superconductivity
- T54: Neutron imaging for energy materials
- T55: Nondestructive testing for energy applications
- T57: Energy security
-
Area 8: Multi-scale Analysis, Simulation, Synthesis, and Optimization of Energy Systems
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T13: Hydrogen-based supply chain
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T39: Modeling, simulation and optimization of energy systems
- T40: Design and synthesis of energy conversion systems
- T41: Energy supply chain
- T42: Control, scheduling, planning, safety, risk analysis, and uncertainty in energy systems
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T48: Energy efficiency in urban systems
- T49: Energy use, conservation and lighting technologies for buildings
- T50: Energy in transportation systems: Electric, natural gas, and hybrid vehicles
- T59: Communications for energy systems
- T60: Water use in hydraulic fracturing
- T62: Environmental impacts of energy production
- Area 9: Energy Transmission
-
Area 10: Energy Policy, Law, Security, and Societal Impact
- T16: Nuclear safety and security
- T33: Smart grid safety and security
- T41: Energy supply chain
- T43: Energy economics
- T44: Energy law and policy
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T57: Energy security
- T62: Environmental impacts of energy production
-
Area 1: Fossil-based Technologies for Energy
-
Theme 2: Materials, Catalysis, and Separations for Energy
-
Area 1: Fossil-based Technologies for Energy
- T1: Petroleum exploration and production
- T2: Conventional and unconventional reservoirs
- T3: Drilling technologies
- T4: Natural/shale gas production
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T12: Hydrogen production
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T57: Energy security
- T58: Environmental risk assessment for planning offshore structures
- T60: Water use in hydraulic fracturing
- T65: Crude oil processing: non-thermal, electrical discharge, and plasma processes
-
Area 2: Renewable Technologies for Energy
- T7: Biomass production
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T17: Solar energy conversion and lighting technologies
- T18: Materials for solar energy conversion and storage
- T19: Wind energy conversion technologies
- T20: Wind energy measurement, forecasting, and storage
- T24: Ocean energy conversion
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T34: Fuel cells technologies and materials
- T35: Thermoelectrics-based technologies and materials
- T55: Nondestructive testing for energy applications
- T56: Biofuel biochemistry and energy metabolism
- T63: Turbomachinery for energy use and its reliability
- T64: Materials for wind energy
- Area 3: Geothermal and Hydropower-based Technologies for Energy
-
Area 4: Nuclear Energy Technologies
- T14: Nuclear energy conversion technologies
- T15: Materials for nuclear fuels and system design
- T16: Nuclear safety and security
- T27: Multifunctional materials for energy applications
- T53: Applied superconductivity
- T54: Neutron imaging for energy materials
- T55: Nondestructive testing for energy applications
- T57: Energy security
-
Area 5: Energy Storage
- T31: Electric power generation and storage
- T34: Fuel cells technologies and materials
- T35: Thermoelectrics-based technologies and materials
- T36: Technologies for energy storage: Batteries
- T37: Technologies for energy storage: Hydrogen
- T38: Technologies for energy storage: Supercapacitors
- T51: Technologies for energy storage: Compressed air
- T52: Technologies for energy storage: Heat pumps
- T61: Technologies for energy storage: Flywheels
- T64: Materials for wind energy
- Area 6: Energy Efficiency
- Area 7: Carbon Capture, Utilization, and Storage
-
Area 8: Multi-scale Analysis, Simulation, Synthesis, and Optimization of Energy Systems
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T13: Hydrogen-based supply chain
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27 Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T39: Modeling, simulation and optimization of energy systems
- T40: Design and synthesis of energy conversion systems
- T41: Energy supply chain
- T42: Control, scheduling, planning, safety, risk analysis, and uncertainty in energy systems
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T48: Energy efficiency in urban systems
- T49: Energy use, conservation and lighting technologies for buildings
- T50: Energy in transportation systems: Electric, natural gas, and hybrid vehicles
- T59: Communications for energy systems
- T60: Water use in hydraulic fracturing
- T62: Environmental impacts of energy production
-
Area 1: Fossil-based Technologies for Energy
-
Theme 3: Multi-scale Energy Systems Engineering
-
Area 1: Fossil-based Technologies for Energy
- T1: Petroleum exploration and production
- T2: Conventional and unconventional reservoirs
- T3: Drilling technologies
- T4: Natural/shale gas production
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T12: Hydrogen production
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T57: Energy security
- T58: Environmental risk assessment for planning offshore structures
- T60: Water use in hydraulic fracturing
- T65: Crude oil processing: non-thermal, electrical discharge, and plasma processes
-
Area 2: Renewable Technologies for Energy
- T7: Biomass production
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T17: Solar energy conversion and lighting technologies
- T18: Materials for solar energy conversion and storage
- T19: Wind energy conversion technologies
- T20: Wind energy measurement, forecasting, and storage
- T24: Ocean energy conversion
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T34: Fuel cells technologies and materials
- T35: Thermoelectrics-based technologies and materials
- T55: Nondestructive testing for energy applications
- T56: Biofuel biochemistry and energy metabolism
- T63: Turbomachinery for energy use and its reliability
- T64: Materials for wind energy
- Area 3: Geothermal and Hydropower-based Technologies for Energy
-
Area 4: Nuclear Energy Technologies
- T14: Nuclear energy conversion technologies
- T15: Materials for nuclear fuels and system design
- T16: Nuclear safety and security
- T27: Multifunctional materials for energy applications
- T53: Applied superconductivity
- T54: Neutron imaging for energy materials
- T55: Nondestructive testing for energy applications
- T57: Energy security
- Area 6: Energy Efficiency
- Area 7: Carbon Capture, Utilization, and Storage
-
Area 8: Multi-scale Analysis, Simulation, Synthesis, and Optimization of Energy Systems
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T13: Hydrogen-based supply chain
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T39: Modeling, simulation and optimization of energy systems
- T40: Design and synthesis of energy conversion systems
- T41: Energy supply chain
- T42: Control, scheduling, planning, safety, risk analysis, and uncertainty in energy systems
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T48: Energy efficiency in urban systems
- T49: Energy use, conservation and lighting technologies for buildings
- T50: Energy in transportation systems: Electric, natural gas, and hybrid vehicles
- T59: Communications for energy systems
- T60: Water use in hydraulic fracturing
- T62: Environmental impacts of energy production
- Area 9: Energy Transmission
-
Area 10: Energy Policy, Law, Security, and Societal Impact
- T16: Nuclear safety and security
- T33: Smart grid safety and security
- T41: Energy supply chain
- T43: Energy economics
- T44: Energy law and policy
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T57: Energy security
- T62: Environmental impacts of energy production
-
Area 1: Fossil-based Technologies for Energy
-
Theme 4: Energy Economics, Law, Policy, and Societal Impact
-
Area 1: Fossil-based Technologies for Energy
- T1: Petroleum exploration and production
- T2: Conventional and unconventional reservoirs
- T3: Drilling technologies
- T4: Natural/shale gas production
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T12: Hydrogen production
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T57: Energy security
- T58: Environmental risk assessment for planning offshore structures
- T60: Water use in hydraulic fracturing
- T65: Crude oil processing: non-thermal, electrical discharge, and plasma processes
-
Area 2: Renewable Technologies for Energy
- T7: Biomass production
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T17: Solar energy conversion and lighting technologies
- T18: Materials for solar energy conversion and storage
- T19: Wind energy conversion technologies
- T20: Wind energy measurement, forecasting, and storage
- T24: Ocean energy conversion
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T34: Fuel cells technologies and materials
- T35: Thermoelectrics-based technologies and materials
- T55: Nondestructive testing for energy applications
- T56: Biofuel biochemistry and energy metabolism
- T63: Turbomachinery for energy use and its reliability
- T64: Materials for wind energy
- Area 3: Geothermal and Hydropower-based Technologies for Energy
-
Area 4: Nuclear Energy Technologies
- T14: Nuclear energy conversion technologies
- T15: Materials for nuclear fuels and system design
- T16: Nuclear safety and security
- T27: Multifunctional materials for energy applications
- T53: Applied superconductivity
- T54: Neutron imaging for energy materials
- T55: Nondestructive testing for energy applications
- T57: Energy security
- Area 7: Carbon Capture, Utilization, and Storage
-
Area 8: Multi-scale Analysis, Simulation, Synthesis, and Optimization of Energy Systems
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T13: Hydrogen-based supply chain
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T39: Modeling, simulation and optimization of energy systems
- T40: Design and synthesis of energy conversion systems
- T41: Energy supply chain
- T42: Control, scheduling, planning, safety, risk analysis, and uncertainty in energy systems
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T48: Energy efficiency in urban systems
- T49: Energy use, conservation and lighting technologies for buildings
- T50: Energy in transportation systems: Electric, natural gas, and hybrid vehicles
- T59: Communications for energy systems
- T60: Water use in hydraulic fracturing
- T62: Environmental impacts of energy production
- Area 9: Energy Transmission
-
Area 10: Energy Policy, Law, Security, and Societal Impact
- T16: Nuclear safety and security
- T33: Smart grid safety and security
- T41: Energy supply chain
- T43: Energy economics
- T44: Energy law and policy
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T57: Energy security
- T62: Environmental impacts of energy production
-
Area 1: Fossil-based Technologies for Energy
-
Theme 1: Fossil and Non-Fossil based Technologies for Energy