Find Faculty Experts
-
Education
- Degree: Diplome of Honour
- Year: 2007
-
Institution and Location
University of Patras, Greece -
Major Discipline
Honorary Degree
- Degree: Dr.Techn.
- Year: 1985
-
Institution and Location
The Technical University of Denmark, Lyngby, Denmark -
Major Discipline
Solid Mechanics
- Degree: Ph.D.
- Year: 1974
-
Institution and Location
The Technical University of Denmark, Lyngby, Denmark -
Major Discipline
Solid Mechanics
- Degree: M.S.
- Year: 1970
-
Institution and Location
Northeastern University, Boston, MA -
Major Discipline
Civil Engineering
- Degree: B.E.
- Year: 1967
-
Institution and Location
University of Bombay, India -
Major Discipline
Civil Engineering
-
Ramesh Talreja
Tenneco Endowed Professor of Engineering, AAAS Science and Technology Policy Fellow; Department of Aerospace Engineering, Department of Material Sciences & Engineering
Department(s): Department of Aerospace Engineering and Department of Material Sciences & Engineering
Campus: Texas A&M University
Contact Information
Research Topic(s)
Materials for Wind Energy
Research Summary
We have developed a methodology for cost-effective manufacturing of composite structures that addresses cost/performance trade-offs accounting for manufacturing defects that are inevitable in rotor blades. This methodology incorporates in the long-term performance models various common defects, such as voids and unbounded interfaces, to systematically generate worst-case scenarios that can be introduced in the trade-off studies for cost minimization. The performance models are based on experimental studies conducted over many years where observations of failure at the micro-scale are properly incorporated in the failure criteria. These failure criteria are multi-axial and therefore represent most general loading scenarios.
Professional Background
2020-2022 Visiting Professor, Linköping University, Sweden 2003-Present Visiting Professor, University of Sheffield, Sheffield, UK 2001-Present Tenneco Professor, Department of Aerospace Engineering, Texas A&M University, College Station, TX 2001-2003 Department Head, Department of Aerospace Engineering, Texas A&M University 2001-2003 Division Chief, Aerospace Engineering, Texas A&M Engineering Experiment Station, The Texas A&M University System, College Station, TX 1999-2000 Distinguished Visiting Professor, U.S. Air Force Academy 1992-2018 Visiting Professor, Department of Polymer Engineering, Luleå University of Technology, Sweden; Aug 1992, Aug-Sep 1993, Aug-Sep 1994, Aug-Sep 1995, Aug 1997, Aug 2011-2018 1991-2001 Professor of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 1989-1990 Visiting Professor, Center for Composite Materials and Department of Mechanical Engineering, University of Delaware, Newark, DE 1989-1990 Visiting Scientist, Pioneering Research Laboratory, DuPont Co., Wilmington, DE 1988-1991 Docent ( Lecturer of Special Qualifications – equivalent of a Professor in the North American system), The Technical University of Denmark, Lyngby, Denmark 1987-1991 Distinguished Visiting Scholar, Wright Research and Development Center, Wright Patterson AFB, OH (7 visits) 1985 Fall Visiting Professor and Fulbright Senior Lecturer, Engineering Science and Mechanics Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 1983 Spring Visiting Scholar, Engineering Science and Mechanics Department, Virginia Polytechnic Institute and State University 1978-1988 Lektor (pre-Professor faculty status), The Technical University of Denmark 1978-1983 Research Scientist, Risø National Laboratory, Roskilde, Denmark 1971-1978 Scientist, The Technical University of Denmark 1968-1970 Structural Engineer, Fay, Spafford, and Thorndike, Inc., Boston, MA -
Themes, Areas, and Topics
-
Theme 1: Fossil and Non-Fossil based Technologies for Energy
-
Area 1: Fossil-based Technologies for Energy
- T1: Petroleum exploration and production
- T2: Conventional and unconventional reservoirs
- T3: Drilling technologies
- T4: Natural/shale gas production
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T12: Hydrogen production
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T57: Energy security
- T58: Environmental risk assessment for planning offshore structures
- T60: Water use in hydraulic fracturing
- T65: Crude oil processing: non-thermal, electrical discharge, and plasma processes
-
Area 2: Renewable Technologies for Energy
- T7: Biomass production
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T17: Solar energy conversion and lighting technologies
- T18: Materials for solar energy conversion and storage
- T19: Wind energy conversion technologies
- T20: Wind energy measurement, forecasting, and storage
- T24: Ocean energy conversion
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T34: Fuel cells technologies and materials
- T35: Thermoelectrics-based technologies and materials
- T55: Nondestructive testing for energy applications
- T56: Biofuel biochemistry and energy metabolism
- T63: Turbomachinery for energy use and its reliability
- T64: Materials for wind energy
- Area 3: Geothermal and Hydropower-based Technologies for Energy
-
Area 4: Nuclear Energy Technologies
- T14: Nuclear energy conversion technologies
- T15: Materials for nuclear fuels and system design
- T16: Nuclear safety and security
- T27: Multifunctional materials for energy applications
- T53: Applied superconductivity
- T54: Neutron imaging for energy materials
- T55: Nondestructive testing for energy applications
- T57: Energy security
-
Area 8: Multi-scale Analysis, Simulation, Synthesis, and Optimization of Energy Systems
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T13: Hydrogen-based supply chain
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T39: Modeling, simulation and optimization of energy systems
- T40: Design and synthesis of energy conversion systems
- T41: Energy supply chain
- T42: Control, scheduling, planning, safety, risk analysis, and uncertainty in energy systems
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T48: Energy efficiency in urban systems
- T49: Energy use, conservation and lighting technologies for buildings
- T50: Energy in transportation systems: Electric, natural gas, and hybrid vehicles
- T59: Communications for energy systems
- T60: Water use in hydraulic fracturing
- T62: Environmental impacts of energy production
- Area 9: Energy Transmission
-
Area 10: Energy Policy, Law, Security, and Societal Impact
- T16: Nuclear safety and security
- T33: Smart grid safety and security
- T41: Energy supply chain
- T43: Energy economics
- T44: Energy law and policy
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T57: Energy security
- T62: Environmental impacts of energy production
-
Area 1: Fossil-based Technologies for Energy
-
Theme 2: Materials, Catalysis, and Separations for Energy
-
Area 1: Fossil-based Technologies for Energy
- T1: Petroleum exploration and production
- T2: Conventional and unconventional reservoirs
- T3: Drilling technologies
- T4: Natural/shale gas production
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T12: Hydrogen production
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T57: Energy security
- T58: Environmental risk assessment for planning offshore structures
- T60: Water use in hydraulic fracturing
- T65: Crude oil processing: non-thermal, electrical discharge, and plasma processes
-
Area 2: Renewable Technologies for Energy
- T7: Biomass production
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T17: Solar energy conversion and lighting technologies
- T18: Materials for solar energy conversion and storage
- T19: Wind energy conversion technologies
- T20: Wind energy measurement, forecasting, and storage
- T24: Ocean energy conversion
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T34: Fuel cells technologies and materials
- T35: Thermoelectrics-based technologies and materials
- T55: Nondestructive testing for energy applications
- T56: Biofuel biochemistry and energy metabolism
- T63: Turbomachinery for energy use and its reliability
- T64: Materials for wind energy
- Area 3: Geothermal and Hydropower-based Technologies for Energy
-
Area 4: Nuclear Energy Technologies
- T14: Nuclear energy conversion technologies
- T15: Materials for nuclear fuels and system design
- T16: Nuclear safety and security
- T27: Multifunctional materials for energy applications
- T53: Applied superconductivity
- T54: Neutron imaging for energy materials
- T55: Nondestructive testing for energy applications
- T57: Energy security
-
Area 5: Energy Storage
- T31: Electric power generation and storage
- T34: Fuel cells technologies and materials
- T35: Thermoelectrics-based technologies and materials
- T36: Technologies for energy storage: Batteries
- T37: Technologies for energy storage: Hydrogen
- T38: Technologies for energy storage: Supercapacitors
- T51: Technologies for energy storage: Compressed air
- T52: Technologies for energy storage: Heat pumps
- T61: Technologies for energy storage: Flywheels
- T64: Materials for wind energy
- Area 6: Energy Efficiency
- Area 7: Carbon Capture, Utilization, and Storage
-
Area 8: Multi-scale Analysis, Simulation, Synthesis, and Optimization of Energy Systems
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T13: Hydrogen-based supply chain
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27 Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T39: Modeling, simulation and optimization of energy systems
- T40: Design and synthesis of energy conversion systems
- T41: Energy supply chain
- T42: Control, scheduling, planning, safety, risk analysis, and uncertainty in energy systems
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T48: Energy efficiency in urban systems
- T49: Energy use, conservation and lighting technologies for buildings
- T50: Energy in transportation systems: Electric, natural gas, and hybrid vehicles
- T59: Communications for energy systems
- T60: Water use in hydraulic fracturing
- T62: Environmental impacts of energy production
-
Area 1: Fossil-based Technologies for Energy
-
Theme 3: Multi-scale Energy Systems Engineering
-
Area 1: Fossil-based Technologies for Energy
- T1: Petroleum exploration and production
- T2: Conventional and unconventional reservoirs
- T3: Drilling technologies
- T4: Natural/shale gas production
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T12: Hydrogen production
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T57: Energy security
- T58: Environmental risk assessment for planning offshore structures
- T60: Water use in hydraulic fracturing
- T65: Crude oil processing: non-thermal, electrical discharge, and plasma processes
-
Area 2: Renewable Technologies for Energy
- T7: Biomass production
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T17: Solar energy conversion and lighting technologies
- T18: Materials for solar energy conversion and storage
- T19: Wind energy conversion technologies
- T20: Wind energy measurement, forecasting, and storage
- T24: Ocean energy conversion
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T34: Fuel cells technologies and materials
- T35: Thermoelectrics-based technologies and materials
- T55: Nondestructive testing for energy applications
- T56: Biofuel biochemistry and energy metabolism
- T63: Turbomachinery for energy use and its reliability
- T64: Materials for wind energy
- Area 3: Geothermal and Hydropower-based Technologies for Energy
-
Area 4: Nuclear Energy Technologies
- T14: Nuclear energy conversion technologies
- T15: Materials for nuclear fuels and system design
- T16: Nuclear safety and security
- T27: Multifunctional materials for energy applications
- T53: Applied superconductivity
- T54: Neutron imaging for energy materials
- T55: Nondestructive testing for energy applications
- T57: Energy security
- Area 6: Energy Efficiency
- Area 7: Carbon Capture, Utilization, and Storage
-
Area 8: Multi-scale Analysis, Simulation, Synthesis, and Optimization of Energy Systems
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T13: Hydrogen-based supply chain
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T39: Modeling, simulation and optimization of energy systems
- T40: Design and synthesis of energy conversion systems
- T41: Energy supply chain
- T42: Control, scheduling, planning, safety, risk analysis, and uncertainty in energy systems
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T48: Energy efficiency in urban systems
- T49: Energy use, conservation and lighting technologies for buildings
- T50: Energy in transportation systems: Electric, natural gas, and hybrid vehicles
- T59: Communications for energy systems
- T60: Water use in hydraulic fracturing
- T62: Environmental impacts of energy production
- Area 9: Energy Transmission
-
Area 10: Energy Policy, Law, Security, and Societal Impact
- T16: Nuclear safety and security
- T33: Smart grid safety and security
- T41: Energy supply chain
- T43: Energy economics
- T44: Energy law and policy
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T57: Energy security
- T62: Environmental impacts of energy production
-
Area 1: Fossil-based Technologies for Energy
-
Theme 4: Energy Economics, Law, Policy, and Societal Impact
-
Area 1: Fossil-based Technologies for Energy
- T1: Petroleum exploration and production
- T2: Conventional and unconventional reservoirs
- T3: Drilling technologies
- T4: Natural/shale gas production
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T12: Hydrogen production
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T57: Energy security
- T58: Environmental risk assessment for planning offshore structures
- T60: Water use in hydraulic fracturing
- T65: Crude oil processing: non-thermal, electrical discharge, and plasma processes
-
Area 2: Renewable Technologies for Energy
- T7: Biomass production
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T17: Solar energy conversion and lighting technologies
- T18: Materials for solar energy conversion and storage
- T19: Wind energy conversion technologies
- T20: Wind energy measurement, forecasting, and storage
- T24: Ocean energy conversion
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T34: Fuel cells technologies and materials
- T35: Thermoelectrics-based technologies and materials
- T55: Nondestructive testing for energy applications
- T56: Biofuel biochemistry and energy metabolism
- T63: Turbomachinery for energy use and its reliability
- T64: Materials for wind energy
- Area 3: Geothermal and Hydropower-based Technologies for Energy
-
Area 4: Nuclear Energy Technologies
- T14: Nuclear energy conversion technologies
- T15: Materials for nuclear fuels and system design
- T16: Nuclear safety and security
- T27: Multifunctional materials for energy applications
- T53: Applied superconductivity
- T54: Neutron imaging for energy materials
- T55: Nondestructive testing for energy applications
- T57: Energy security
- Area 7: Carbon Capture, Utilization, and Storage
-
Area 8: Multi-scale Analysis, Simulation, Synthesis, and Optimization of Energy Systems
- T5: Natural/shale gas supply chain
- T6: Coal conversion to liquid fuels/chemicals/electricity
- T8: Biomass conversion to liquid fuels/chemicals/electricity
- T9: Biomass-based supply chain
- T10: Hybrid feedstocks (any combination of biomass/coal/natural gas/petroleum) conversion to liquid fuels/chemicals/electricity
- T11: Hybrid feedstocks-based supply chain
- T12: Hydrogen production
- T13: Hydrogen-based supply chain
- T25: Catalysis and reaction engineering for energy applications
- T26: Combustion
- T27: Multifunctional materials for energy applications
- T28: Separation technologies for energy applications (e.g., CO2 capture, utilization, storage)
- T29: Materials for separations in energy applications
- T39: Modeling, simulation and optimization of energy systems
- T40: Design and synthesis of energy conversion systems
- T41: Energy supply chain
- T42: Control, scheduling, planning, safety, risk analysis, and uncertainty in energy systems
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T48: Energy efficiency in urban systems
- T49: Energy use, conservation and lighting technologies for buildings
- T50: Energy in transportation systems: Electric, natural gas, and hybrid vehicles
- T59: Communications for energy systems
- T60: Water use in hydraulic fracturing
- T62: Environmental impacts of energy production
- Area 9: Energy Transmission
-
Area 10: Energy Policy, Law, Security, and Societal Impact
- T16: Nuclear safety and security
- T33: Smart grid safety and security
- T41: Energy supply chain
- T43: Energy economics
- T44: Energy law and policy
- T45: Energy and sustainability
- T46: Energy and water supply chain
- T47: Energy and food supply chain
- T57: Energy security
- T62: Environmental impacts of energy production
-
Area 1: Fossil-based Technologies for Energy
-
Theme 1: Fossil and Non-Fossil based Technologies for Energy